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ABSTR AC T
Unlike traditional sensor architectures that often generate an excess of redundant 
data and suffer from high power consumption, neuromorphic sensors offer a 
streamlined approach, providing energy-efficient data processing by leveraging the 
mechanisms of spiking neural networks. This work reviews the latest advancements in 
neuromorphic visual, auditory, gustatory, olfactory, haptic and proprioceptive sensors, 
drawing parallels with their biological analogs and discussing their integration with 
neuromorphic computing frameworks. By converging neuroscience, materials science, 
and microelectronics, neuromorphic sensors potentially enhance human sensory 
capabilities, promising profound impacts on robotics and artificial intelligence.
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Neuromorphic computing derives from a paper 
published by Professor Carver Mead at the California 
Institute of Technology in 1990. It emphasizes the 
emulation of the principles of neurons and synapses 
in the human brain for data processing. Unlike the 
frame-based continuous data processing of traditional 
machine learning approaches, such a brain-inspired 
machine learning technique uses “spikes” to compute 
in response to changes or events in the input and thus 
convey information about the temporal dynamics of the 
input. Neuromorphic computing can be more effective 
than traditional machine learning approaches due to 
their brain-inspired nature, especially when the input 
data are ill-conditioned. In neuromorphic computing, 
only a small amount of charge is released during the 
transmission of neural impulses. The signal passes only 
when the accumulated charge exceeds a set threshold. 
Neuromorphic chips process information in a parallel 
and event-driven manner, making localized real-time 
data processing feasible and quicker in applications that 
require quick responses and low power consumption 
even to multiple inputs simultaneously, such as robotics, 
autonomous systems, Internet of Things (IoT), and 
multiplex sensing. 
  In recent years, increasing efforts have been made to 
incorporate neuromorphic computing for processing 
diverse sensory information, leading to the development 
of intelligent and adaptive sensing systems inspired by 
biological principles. These systems aim to mimic the 
complex selective attention operations performed by 
biological organisms, allowing for quick determination 
of motor actions in response to subsets of sensory 
inputs, while suppressing non-salient signals. The 
synergy between neuromorphic principles and learning 
algorithms further enabled sensors with enhanced 
adaptability, improved efficiency, and low latency, 
such as reduced data redundancy. The integration 
of neuromorphic computing at the edge, in closer 
proximity to sensors, has emerged as highly intelligent 
and adaptive sensing platforms, which makes them 
promising for applications in robotics and computational 
neuroscience. However, the design and development of 
hardware architectures capable of efficiently supporting 
multiplex neuromorphic sensing is still challenging. 
Research in this field spans from single-chip sensors 
to multi sensory modalities, with a focus on enhanced 
adaptabilities under different environment and operation 
conditions.
 Significant advances have been made in the development 
of neuromorphic sensory materials. Typically, two-
dimensional materials, optoelectronic materials, ionic 
liquids/gels, ferroelectric materials, phase-change 
materials, and biological materials have all been studied 
in the fabrication of neuromorphic devices, enabling the 
simulation of basic biological synaptic functions and 
laying the hardware foundation for artificial perception 
systems. The major focus is to seek novel functional 
materials with high sensitivity and selectivity through 
materials synthesis, micro-nano fabrication, device 
physics, and circuit design. 
  This literature review provides a comprehensive 
overview of the current state of research on neuromorphic 
sensing, their applications and challenges.    
                                                                                                                                         

Vision is a primary method of perception and is vital due 
to its capacity for comprehensive information gathering 
on the surrounding environment with a high level of 
detail and accuracy. Inspired by the architecture of the 
human retina and the principles of the brain-inspired 
machine learning, neuromorphic vision sensors can 
simulate the pulse firing mechanism of the biological 
retina and efficiently capture and process visual 
information[1, 2]. By leveraging in-sensor computing, 
visual data is detected, converted into electrical signals, 
and processed within the neuromorphic visual sensor 
devices. The ultimate goal is to simulate the structure 
and mechanisms of biological vision perception, scene 
reconstruction, object recognition, texture analysis, 
motion tracking and spatial data extraction in a timely 
and energy-efficient manner.
 Neuromorphic visual sensors emulate the characteristics 
of the biological visual system to operate, offering a 
promising and efficient approach for achieving low 
power consumption and high-performance image 
processing capabilities of vision sensors[3-5]. The 
human visual system is a complex integration of the 
eyes, optic nerves, and the visual cortex of the brain. 
The retina within the human eye is responsible for 
perceiving and preprocessing visual information, which 
is then transmitted to the visual cortex of the brain 
through the visual nerves for further processing[6, 7]. 
The retina, as the site of visual information acquisition 
and initial processing, consists of three main layers: 
the photoreceptor layer, the outer plexiform layer, 
and the inner plexiform layer. The retina converts the 
spatiotemporal information contained in incoming light 
from the visual scene into spike trains and patterns, 
capable of preprocessing the information carried 
by these spikes, which discards redundant visual 
data, significantly accelerating further information 
processing in the human brain[1, 8].
    Based on the simulation of the human visual system, 
neuromorphic vision devices, also known as silicon 
retinas, have been developed over the past three 
decades. Mahowald and Mead et al. firstly introduced 
the silicon retinas in 1991[9]. Silicon retinas represent 
neuromorphic vision sensors that are modeled after the 
human retinas, sometimes also called event cameras. 
In the past decades, various integrated circuit-based 
visual sensors have been developed including temporal 
contrast vision sensors, gradient-based sensors, edge-
orientation sensitive sensors, and optical flow sensors[3, 
10, 11]. Currently, vision sensors based on biological 
principles are continuously being developed. Relative to 
integrated circuit-based visual sensors, they overcome 
drawbacks such as high noise levels and complex 
circuitry. Common neuromorphic vision sensors include 
Dynamic Vision Sensors (DVS), Asynchronous Time-
based Image Sensors (ATIS), and Dynamic and Active-
pixel Vision Sensors (DAVIS).
   DVS is a benchmark neuromorphic sensor based on 
event-driven or Address-Event Representation (AER)
[12, 13]. It features sub-millisecond precision, >120 dB 
dynamic range, and low power consumption of 23 mW. 
This approach was first proposed by Delbruck et al., 
who reported an event-driven vision sensor with 64x64 
pixels recording brightness changes at each pixel [14]. 
In a typical DVS pixel, it includes a photoreceptor, 
differencing circuit, and comparators,which simplify 
and simulate the three-layer structure of the retina in the 
eye[15]. 

1 .  INTRODUCTION 2.  NEUROMORPHIC VISUAL SENSORS  
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 This type of vision sensor is sensitive to dynamic 
information provided by the scene, but it has significant 
limitations in perceiving sustained information. Posch 
et al. developed ATIS, a time-based asynchronous 
image sensor, which demonstrated for the first time 
the possibility of simultaneously acquiring static 
and dynamic image information[16, 17]. ATIS has 
the capability to simultaneously capture static and 
dynamic image information, offering a high degree of 
flexibility due to the combination of two sub-pixels 
within each pixel. In comparison to DVS, ATIS can 
measure the absolute pixel intensity in addition to the 
detection of brightness changes.  By combining DVS 
and APS, another method, DAVIS, has been developed 
to integrate dynamic and static information into a single 
pixel[18, 19]. The advantages of DAVIS include high 
temporal resolution, high dynamic range, low power 
consumption, and absence of motion blur [105]. These 
traditional neuromorphic vision sensors have been 
widely applied in various computer vision and robotics 
applications[20, 21]. However, they still suffer from 
drawbacks such as complex circuitry, high latency, low 
integration, and high power consumption.
  In order to address the drawbacks of traditional 
neuromorphic vision sensors implemented based on 
CMOS, neuromorphic vision sensors based on emerging 
devices have been developed. Based on recently 
developed various novel functional materials, some 
neuromorphic vision architectures mimicking the low 
power consumption and high-resolution characteristics 
of the eye have been developed, including hemispherical 
vision sensors, Optoelectronic Resistive Radom Access 
Memory (ORAM) vision sensors, and Neural Network 
(NN) vision sensors[22]. The hemispherical structure 
of the human retina is advantageous for high-sensitivity 
image acquisition, visual information preprocessing, 
and transmission. Hemispherical vision sensors aim to 
simulate this characteristic of the human eye, making 
them suitable for applications in humanoid robots which 
require a wide field of view[23]. Long et al. demonstrated 
a hemispherical neuromorphic retina of a bionic eye with 
achromatic vision, which possesses capabilities of color 
perception, optical adaptability, and energy efficiency 
that were missing in previous studies[24]. Currently, 
the limitation of hemispherical image sensors lies in the 
fact that their pixels are composed of photodetectors, 
which lack the capabilities for information storage and 
preprocessing. ORAM employs an alternative approach 
using optical excitation modulation, which enables 
the integration of optical sensing and preprocessing 
capabilities, simplifying the circuitry of neuromorphic 
vision sensors and reducing power consumption. Zhou 
et al. proposed a novel multimodal ORAM device 
array based on modified silk fibroin protein (MSFP), 
which allows for complete optical SET and optical 
RESET operations along with further multiple image 
preprocessing functionalities[25]. NN visual sensors are 
a type of neural network visual sensor with in-sensor 
computing capabilities, designed to address the issues 
of latency and high power consumption in traditional 
visual systems. Wang et al. reported on an image sensor 
based on van der Waals (vdW) heterostructures, which 
achieved a reconfigurable visual sensor capable of 
simultaneous image sensing and processing[26]. Neural 
network image sensors based on two-dimensional 
materials have demonstrated great potential in ultrafast 
machine vision applications. However, these visual 
sensors are not easily compatible with large-scale 
integration, limiting their further applications. In the 
future, how to fully utilize optoelectronic devices 

and novel functional materials to compost large-scale 
hemispherical neural network image sensors remains an 
important research direction. Researchers continue to 
strive for the realization of low-power, real-time, highly 
biomimetic machine vision systems.
  Recently, more and more in-vehicle cameras (i.e. 
Unmanned aerial vehicle) with onboard processors 
provide automatic driver assistance, navigation, lane 
departure warning, obstacle avoidance, and surveillance 
functionality. In medical imaging devices, such as 
X-ray or ultrasound machines, neuromorphic computing 
enhances their real-time image process and analysis 
capability. In mobile devices, facial recognition, 
augmented reality, and image enhancement all become 
broadly used. For instance, the focal plane sensor-
processor (FPSP)[27], an in-sensor visual computing 
device, has been developed for more than 20 years with 
in-chip perception, memory, and processing architectures 
altogether. In comparison with conventional computer 
vision systems, the FPSP allows for decreased system 
complexity, reduced power consumption, enhanced 
information processing efficiency and security.
    
  
                                                                                                                                         

Figure 1.   The principle of neuromorphic vision sensor. 
Adapted from Liu, Y., et al., 2023[28] The Authors, published by 
Intelligent Computing, under a Creative Commons Attribution 
License 4.0 (CC BY 4.0). Reprinted with permission. 

Despite a range of materials have been studied in their 
photo-electric synaptic plasticity, such as metal oxide 
(i.e. MoOx, ZnO, Al2O3 used as dielectrics or charge 
trapping layers), Si nanocrystals, perovskites, and two-
dimensional (2D) semiconductors (i.e. MoS2, WSe2, 
WS2, MoSe2, graphene, hexagonal boron nitride (h-BN), 
etc.), it is still challenging to fabricate bionic eyes due 
to poor reliability and limited functionality. For instance, 
the range of typical optical bandgap is still limited to 
their applications including robotics, computer vision, 
and surveillance.
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The sense of touch enables robots and artificial systems 
to perceive and respond to touch in a manner similar to 
human skin. It is critical in human-robot interaction. 
Tactile sensing involves complex physical interactions 
and plays a key role in estimating physical properties 
such as surface texture, hardness, material, shape, etc. 
The ability to discern through touch enables systems 
to differentiate between themselves and surrounding 
objects, and the rich physical interactions among real-
world objects can be better understood. In biological 
systems, tactile sensing exhibits superior performance 
and robustness: human reflexes can respond rapidly 
within 65 milliseconds when processing signals from 
the brain[29, 30]. Due to the unique parallel processing 
and memory of synapses distributed within the brain, 
biological systems exhibit extremely low energy 
consumption and high speed responses. Consequently, 
researchers are attempting to replicate this efficient 
functionality through neuromorphic systems.
  Based on the advancements in micro-neuroimaging 
techniques, the sense of touch was extensively explored 
by researchers in the 1960s[31, 32]. Humans are capable 
of recognizing various shapes through touch due to 
the presence of mechanoreceptors. Mechanoreceptors 
can be divided into two categories: slow adapting 
(SA) mechanoreceptors and fast adapting (FA) 
mechanoreceptors[33, 34]. The sensitivity of human 
tactile perception can be quantified by three attributes: 
spatial resolution, temporal resolution, and pressure 
resolution. Suresh et al. confirmed that the temporal 
patterns in the afferent responses of macaques encoded 
shape information[35]. Alessandro et al. investigated the 

ability of humans to discriminate 3D force directions 
by applying force stimuli to the palmar surface of the 
index fingertip[36]. Knill et al. found that human 
perceptual computation is achieved in an optimal 
Bayesian manner[37]. Based on these studies of human 
tactile perception, biomimetic tactile sensors have been 
developed. Various tactile sensing technologies have 
been developed, including resistive, piezoelectric, 
capacitive, optical, and magnetic types[38-45].
  To emulate the tactile capabilities of human 
mechanoreceptors, various types of tactile sensors 
have been developed based on diverse transduction 
technologies and the utilization of spiking neuron models. 
Spiking neuron models are expressed in the form of 
ordinary differential equations (ODEs), which translate 
the signals generated by artificial tactile sensors into 
induced spikes. This includes models such as the leaky 
integrate-and-fire model, the quadratic integrate-and-fire 
model, the Izhikevich model, and the Hodgkin-Huxley 
model[46]. Among these, the leaky integrate-and-fire 
model is the most basic and simple model. Its drawback 
is that due to the fixed threshold, the generated spikes 
lack variability in timing or delay[46, 47]. The quadratic 
integrate-and-fire model incorporates spike latency and 
activity-dependent thresholds[48]. The Izhikevich mode 
is capable of eliciting all known firing patterns present 
in various cortical neurons[49]. Hodgkin et al. proposed 
the Hodgkin-Huxley model which consists of a set of 
four ordinary differential equations that explain the ionic 
mechanisms underlying the initiation and propagation of 
action potentials in the squid giant axon[50].

3.  NEUROMORPHIC TACTILE AND HAPTIC SENSORS

Table 1. Comparison of biomimetic tactile stimulus sensing with spike trains. Adapted with permission [31]. Copyright 
2018, Elsevier. 

YEAR AUTHOR TACTILE SENSOR ANALOG-
TO-SPIKE 

SPIKE TRAIN DECODING APPLICATION REF.

2012 Spigler et.al A 2 × 2 
piezoresistive tactile 
sensor array

The Izhikevich model Spike frequency domain 
analysis

Grating discrimination [51]

2013 Bologna et.al A 4 × 6 capacitive 
square tactile sensor 
array

The integrate-and-fire 
model

Naïve Bayesian classifier Braille letter 
recognition

[52]

2013 Lee et.al A fabric based binary 
tactile sensor array

The Izhikevich model Tempotron Curvature 
discrimination

[53]

2014 Lee et.al A low-cost, foot 
pressure sensor

The Izhikevich model The synaptic kernel inverse 
method (SKIM)

Gait event detection [54]

2015 Rongala et.al A 2 × 2 
piezoresistive tactile 
sensor array

The Izhikevich model Scheme 1: k-nearest 
neighbors based on spike 
features Scheme 2: k-nearest 
neighbors based on Victor-
Purpura distance

Texture discrimination [55]

2015 Chou et. al An interactive, 
tactile neurorobot 
with a 9-by-8 matrix 
of trackballs

The Izhikevich model STDP Learning touch 
preferences

[56]

2017 Yi and Zhang A biomimetic 
fingertip with PVDF 
films

The Izhikevich model A unified framework of spike 
train distance based kNN

Roughness 
discrimination

[57]
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  Advancements in spike-based sensor models have 
enabled the development of biomimetic tactile signal 
processing methods that encode tactile signals into 
spikes[58, 59]. Recently, biomimetic tactile sensing 
with spikes has increasingly garnered attention by 
researchers. Lee et al. adopted the Izhikevich model to 
convert tactile signals into spike signals. Inspired by the 
way tactile data is processed in the brain, they used time 
rather than intensity as the feature for event detection, 
achieving exceptional temporal resolution[53, 54, 
60]. Rongala et al. implemented a decoding process 
that includes spike-feature-based and Victor-Purpura 
distance-based methodologies[55, 61]. The generated 
neuromorphic spike sequences were able to classify 
a variety of natural textures. Spigler et al. proposed 
an artificial mechanotransduction system based on a 
2×2 MEMS array touch sensor. The results indicated 
that core tactile information is retained in the neural 
representation, and modulation generated through 
spiking can be utilized for surface discrimination 
tasks[51]. The summary of research papers related to 
spike-based biomimetic tactile stimulus perception is as 
shown in Table 1.
  While the generation of spike signals for biomimetic 
tactile stimulus perception is receiving increasing 
attention, there remains significant room for 
improvement. With the development of advanced tactile 
sensors, it is possible to generate spike signals directly 
through the tactile sensors without the need for spiking 
neuron models. Another potential direction is the use 
of tactile sensor arrays and spiking neural networks to 
simulate population spike activity. Deep learning and 
Insights gained from deep learning and research in 
biomimetic tactile sensors and signal processing could 
also play a role in future applications of tactile sensing.

Neuromorphic auditory sensors capture sound 
feathers relevant to human hearing, including speech 
recognition, sound localization, and audio processing. 
The essence of neuromorphic auditory sensors lies in 
their biomimetic design, drawing inspiration from the 
human cochlea and auditory cortex. This approach 
enables the sensors to capture and interpret auditory 
signals with remarkable efficiency, paving the way 
for advancements in hearing aids, environmental 
monitoring, and even interactive computing systems. 
At the heart of these sensors’ functionality is advanced 
signal processing, often facilitated by spiking neural 
networks (SNNs). These networks emulate the neural 
processing of the human brain, allowing for the efficient 
and accurate classification of a vast array of sounds, 
from environmental noises to human speech.
  Traditional methods for sensing auditory signals rely on 
the continuous sampling of auditory inputs at a specific 
Nyquist frequency tailored for the application[62]. After 
undergoing Analog-to-Digital Conversion (ADC) and 
subsequent digital processing, this data is transformed 
into auditory frames. The utilization of high-resolution 
ADCs and the digital processing of auditory frames 
result in significant power consumption. Although 
dynamically varying the sampling rate can reduce power 
consumption, there is a risk of losing critical information 
due to lower sampling rates.
  Early electronic cochlea has been built in CXIOS VLSI 
technology using micropower techniques to achieve this 
goal of usefulness via realism. Lyon et al. proposed 
an analog electronic cochlea that models the human 

cochlea using aVLSI[63]. Upon this foundation, Watts et 
al. address issues related to device mismatch, stability, 
and dynamic range, thereby enhancing the performance 
of subthreshold analog VLSI systems[64]. This was 
achieved despite the limited accuracy of individual 
devices, allowing for effective control over the behavior 
of higher-level systems. Sarpeshkar et al. developed a 
low-power wide-dynamic-range analog VLSI Cochlea, 
achieved through the use of transconductance amplifiers 
with a wide linear range, low-noise filter topologies, 
Automatic Gain Control (AGC), and an overlapping 
cascaded structure[65]. These early efforts laid the 
groundwork for further research into the design of 
artificial electronic cochleae.
  Based on the developmental experiences of artificial 
cochleae, auditory processors suitable for silicon 
cochleae have also been developed[66-68]. Sarpeshkar 
et al. reported an ultra-low-power auditory processor 
that significantly enhances efficiency by delaying 
digitization through initial analog preprocessing, which 
can be utilized in bionic ears[69]. They claimed that it 
is suitable for use in fully implanted cochlear-implant 
systems of the future and may also be used as an ultra-
low-power spectrum-analysis front end in portable 
speech-recognition systems.
  Silicon cochleae are widely used in auditory scene 
analysis. The Address Event Representation (AER) 
is incorporated into silicon cochlea chips for general 
neuromorphic applications such as sound localization 
and audio-visual sensor fusion. Chan et al. developed 
an analog integrated circuit containing a matched pair 
of silicon cochleae with AER and  demonstrated the 
cochleae’s capability in sound localization in both ideal 
and reverberant environments[70]. Liu et al. proposes an 
integrated event-based binaural silicon cochlea system 
aimed at efficient spatial audition and auditory scene 
analysis[71]. They claimed that the computational cost 
of an event-driven source localization application can be 
up to 40 times lower when compared to a conventional 
cross-correlation approach.
  Currently, neuromorphic devices have also been 
proposed to achieve sound localization. Two primary 
mechanisms for sound localization have been identified: 
coincidence detection through Interaural Time 
Difference (ITD) and Interaural Level Difference (ILD)
[72]. Sun et al. detected an interaural time difference 
by suppressing sound intensity- or frequency-dependent 
synaptic connectivity. A circuit with our tunable 
excitatory and inhibitory synaptic devices demonstrates 
a key function for realizing the most precise temporal 
computation in the human brain[73].
  These developments underscore the transformative 
potential of neuromorphic auditory sensors, leveraging 
biological principles and advanced computational 
models to create more efficient, accurate, and versatile 
auditory sensing technologies. As research progresses, 
these sensors are poised to revolutionize the field of 
auditory processing, offering new possibilities for both 
human and machine auditory systems.
  
  

4.NEUROMORPHIC AUDITORY SENSORS
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Neuromorphic olfactory sensors, including electronic 
noses, aim to replicate the sense of smell and identify 
various scents. During the Industrial Revolution, the 
need to detect the presence of hazardous volatile organic 
compounds (VOCs) first emerged, sparking research 
into gas sensing technology[74]. Moncreiff developed 
the first artificial mechanical olfactory device, utilizing 
inorganic adsorbents to adsorb odor molecules onto a 
membrane, achieving a sensitivity slightly lower than 
that of the human nose[75]. With growing demand for 
gas sensors, gas sensing systems have evolved towards 
miniaturization, real-time operation, compactness, and 
affordability[76, 77]. As the application of gas sensors 
continues to expand, more complex electronic sensing 
systems are being incorporated into the development of 
artificial noses[78].
  Gardner et al. formally defined the electronic nose 
and described it as a device composed of analog 
sensing units and digital processing units, capable of 
recognizing simple or complex odours[79, 80]. They 
developed an intelligent olfactory system integrating 
a CMOS gas sensor array and processing units on a 
single chip. The typical characteristics and functions 
of integrated smart sensors in electronic noses were 
emphasized, along with the challenges of applying them 
in real-world environments[76]. With the introduction 
of semiconductor gas sensors, new methods for signal 
preprocessing, dimensionality reduction, classification, 
and regression were introduced to handle the multivariate 
data output[81, 82].
  Electronic noses benefit from complementary metal 
oxide semiconductor(CMOS) and microelectro 
mechanical systems(MEMS) technologies, advanced 
pattern matching methods, and novel sensing 
materials[84]. Persaud et al. adopted a biomimetic 

olfactory approach, constructing an electronic nose with 
semiconductor transducers. It was demonstrated that 
stimulating this process using some pattern classification 
principles from artificial intelligence research should 
be feasible[85]. Koickal et al. developed the analog 
circuit design and implementation of the components of 
an adaptive neuromorphic olfaction chip[86, 87]. They 
implemented a neuromorphic architecture with chemical 
sensors, converting chemical sensing signals into spike 
sequences. This spiking neural structure formed the 
signal processing stage of the olfactory bulb model. On-
chip spike timing-dependent plasticity learning circuits 
were integrated, allowing for dynamic adjustment 
of weights for odor detection and classification. 
Bermark et al[88-94]. proposed a hardware/software 
co-design approach using the Zynq platform, aimed 
at implementing an electronic nose system based on 
Principal Component Analysis as an alternative to 
pure software or hardware implementations for the 
processing part of gas identification systems. This 
approach reduces the computational challenges involved 
in pattern matching.
  The sensing front-end of electronic nose systems 
typically employs chemiresistive sensors, including 
either metal oxide sensors or conductive polymer 
sensors[77]. Recently, advancements in materials science 
and nanotechnology have facilitated the development 
of novel sensing technologies, such as Multi-Walled 
Carbon Nanotubes (MWNTs) and gold nanoparticles. 
These sensing front-ends exhibit improved sensitivity 
characteristics, making them suitable for integration 
with spike-based processing[95, 96]. The increasing 
application of carbon nanotubes in electronic sensing is 
primarily due to their superior electrical conductivity 
compared to carbon black. Research indicates that 

Figure 2. A schematic representation of the human auditory pathway and acoustic processing with neuromorphic 
functionalities. Adapted with permission[38]. Copyright 2020, Elsevier.

5.  NEUROMORPHIC OLFACTORY SENSORS
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neuromorphic olfactory systems can greatly benefit 
from the remarkable characteristics of carbon nanotube-
polymer composite sensors, such as ultra-high 
sensitivity, rapid response times, repeatability, and 
long-term stable output[97-99].
  Recent advancements in neuromorphic engineering 
have led to the development of a new generation 
of electronic noses, aiming to mimic the biological 
olfactory pathways. Applying neuromorphic approaches 
to artificial olfactory systems has advantages such as 
reducing processing overhead and mitigating signal 
drift and noise through the implementation of learning 
algorithms[90, 100]. Artificial sensory systems based on 
smart sensing neuromorphic devices have emerged as a 
new direction in the field of electronic noses. Artificial 
sensory systems based on synaptic or neuronal devices 
can more efficiently transmit external information 
to the brain than traditional sensors used in building 
neuromorphic systems[83].
  Currently, electronic nose systems based on neural 
networks still face several unresolved issues. Firstly, 
there is a need to reduce power consumption when 
developing artificial sensory systems based on synaptic 
and neuronal devices[101]. There is a significant 
difference in power consumption between current 
artificial olfactory systems and biological systems. 
Therefore, advancements in various aspects such as 
materials and structural design are needed to promote 
more effective compatibility between artificial synaptic 
devices and biological synapses. Secondly, enhancing 
system stability and durability is crucial for achieving 
high-performance artificial synaptic devices.
  

Gustatory sensing refers to mimicking the sense of taste. 
Due to the growing demand for liquid analysis systems 
to assess process quality in industries such as food, 
beverages, and chemical manufacturing, the industrial 
sector has propelled the development of automated 
systems for monitoring the physicochemical properties 
of products throughout the manufacturing cycle. In 
this context, the use of chemical multi sensor arrays 
as an “electronic tongue” stands out for its ability to 
recognize both quantitative and qualitative components 
of complex solutions[102].
  Similar to neuromorphic olfactory processing[103], 
artificial tongues employ an array of chemical sensors 
(i.e., artificial taste buds), followed by the reading of 
multivariate sensor responses in the electrical domain, 
which are then modeled through appropriate machine 
learning methods. Artificial tongues also benefit from 
CMOS and MEMS technologies, as well as novel 
sensing materials[104].Microsensors fabricated using 
semiconductor technology possess advantages such 
as miniaturization, robustness, high reproducibility, 
scalability in manufacturing, and ease of integration 
with readout electronic circuits. Subsequently, fusion 
algorithms can be applied to multi-sensor readings to 
achieve automated analysis.
  Over the past few decades, various fundamental 
principles for liquid sensing have been reported[106]. 
Currently, sensor arrays used for liquid sensing are based 
on electrochemical methods such as potentiometry, as 
well as voltammetry. Other techniques, such as surface 
acoustic wave sensors and optical chemical sensors, have 
also been reported[107-110]. Similar to the electronic 
nose, the fundamental principle behind the electronic 
tongue is the combination of signals from nonspecific 
and overlapping sensors with pattern recognition 
routines. The use of multivariate analysis methods in 

Figure 3.  The origin of in-sensor olfactory computing. Adapted with permission[83]. Copyright 2023, John Wiley and 
Sons.

6.  NEUROMORPHIC GUSTATORY SENSORS
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conjunction with sensor arrays has been proven to be 
very powerful.
  Multivariate analysis identifies structures and correlations 
within data or builds models from a calibration dataset, 
which are then used to make predictions based on test 
data[111]. To establish models based on the calibration 
dataset, various techniques can be employed, such 
as Partial Least Squares (PLS) and Artificial Neural 
Networks (ANN)[112]. Recently, Han and colleagues 
developed a device capable of simultaneously detecting 
ion concentrations and generating spike signals for an 
electronic tongue, integrating sensing and neuronal 
functions. Using Metal Oxide Semiconductor Field 
Effect Transistors to simulate gustatory neurons in two 
taste modalities, the sensors achieved synchronized 
sensing and spike encoding, with spike frequency 
varying according to the concentrations of hydrogen and 
sodium ions[105]. Yang et al. developed a neuromorphic 
gustatory system capable of simulating taste perception, 
information processing, and providing warnings for 
excessive intake[113]. This system exhibits sensitivity 
several orders of magnitude beyond the biological level, 
offering a promising strategy for the development of 
biomimetic and bio-integrated electronics.
  Currently, the research on neuromorphic gustatory 
systems is still relatively limited compared to fields 
such as vision, hearing, and olfaction. Artificial tongues 
have considerable potential for applications in industries 
such as food, beverage, and chemical manufacturing, 
though some technologies and applications remain 
underdeveloped[102, 114].In the future, the integration 
of sensor technologies based on diverse techniques and 
the development of neural algorithms that are more 
long-term stable and resistant to drift will be potential 
directions for advancement.

Proprioceptive sensors may provide information about the 
position and movement of body parts. They also benefit 
from neuromorphic computing. In the human brain, 
the activity in the hippocampus and entorhinal cortex 
regions enables individuals to easily orient themselves 
within environmental maps[115]. Additionally, they 
support path integration for autonomous navigation. 
Based on motion cues such as the individual’s direction 
and speed over time, path integration can estimate 
their position within the scene map[116]. This is due 
to the mammalian nervous system encoding map-like 
spatial representations. When navigating using path 
integration, the brain needs to encode spatial positions 
and update this information with the direction and speed 
of movement[117, 118]. Spatial navigation models 
help us better understand the workings of the brain. In 
mammals, proprioceptive information is transmitted 
from Golgi tendon organs and muscle spindle organs 
to the central nervous system. Particularly, muscle 
spindles are the primary source of proprioceptive 
feedback for spinal sensory-motor regulation and servo 
control. These sensory organs play crucial roles in 
monitoring and regulating the positions and movements 
of the body’s muscles and joints. Currently, various 
models of afferent activity from muscle spindles 
have been developed. These models aim to accurately 
simulate the dynamic responses of muscle spindles to 
changes[119-122]. These significant advancements in 
neuroscience have built the foundation for research on 
Neuromorphic Proprioceptive Sensors.
  Proprioceptive feedback is crucial for robots during 
motion because it allows them to perceive the position, 
velocity, and acceleration of their own parts. This type 
of sensory feedback is essential for precise control and 
coordinated movement, enabling robots to interact more 

Figure 4. Neuromorphic E-tongue system with artificial gustatory neuron. Reprinted (adapted) with permission[105]. 
Copyright 2024 American Chemical Society.
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effectively with their environment and perform complex 
tasks with higher accuracy[123].
  Currently, the developed solutions for generating spike 
activity from proprioceptive information in closed loops 
can be categorized into two types: custom translation 
and biologically-inspired translation[124]. The former 
typically refers to custom information translation 
specifically tailored for the task. Bouganis et al. 
proposed a spiking neural network architecture capable 
of autonomously learning to control a 4-degrees-of-
freedom(DOF) robotic arm. The neural network consists 
of approximately 12,000 Izhikevich neurons and 
features a feedforward architecture[125]. Stewart et al. 
demonstrated a hybrid neuromorphic learning paradigm, 
which learns complex sensorimotor mappings based on 
a small set of hard-coded reflex behaviors. All control 
is implemented through spiking neurons simulated on 
neuromorphic hardware (SpiNNaker)[126].
  The biology inspired proprioceptive information 
generation method attempts to emulate the true 
topological neural networks found in physiology. 
Screenivasa et al. developed a neuromuscular skeletal 
model of the human arm stretch reflex based on a real 
spiking neural network[127]. This model identifies 
neuromuscular parameters at the motor unit level, 
which integrates the effects of skeletal movement, 
neural and mechanical feedback. Based on the 
model of Mileusnic[128], Vannucci et.al proposed a 
proprioceptive feedback transmission mechanism that 
can be fully integrated into spiking neural network 
simulations and neuromorphic hardware[124]. Chen et 
al. reported a self-powered Artificial Motion Sensing 
System (AMSS) that achieves multimodal information 
recognition, including angles and digits, within a 
Spike Correlated Neural Network (SCNN). They 
demonstrated the significant potential of the AMSS, 
based on simulated vision and vestibular collaboration, 
in the fields of neural robotics, prosthetics, and soft 
electronics[129]. In the future, the advantages of spike 
algorithms for proprioception inspired by the brain will 
increasingly be combined with the benefits derived from 
robotic technology. Event-based sensor approaches can 
provide an innovative method for effective biomimetic 
autonomous robotics.

  
                     

One notable advantage of neuromorphic sensors 
is that they can chemically communicate with real 
neurons and the brain in the form of implanted 
microelectronics[130]. Neuromorphic sensors are 
generally based on the understanding and emulation 
of biological sensation and neural activity in humans; 
therefore, further interdisciplinary research is 
crucial. This includes overcoming challenges such 
as integration complexity, energy efficiency, and the 
ability to process multimodal sensory information in 
real-time. The discovery of various materials has also 
led to significant advancements in the development of 
flexible electronic technologies. Using materials with 
stretchable properties for the fabrication of stretchable 
synaptic devices is very appealing for neuromorphic 
systems used in artificial intelligence. By increasing 

the collaboration across fields such as neuroscience, 
materials science, and microelectronics, the development 
of neuromorphic technologies can not only emulate 
human sensory capabilities but also has the potential to 
enhance them. The future development of neuromorphic 
sensing should focus on the relevance of different sensor 
inputs and efficient preprocessing. Future research 
directions should also target neuromorphic sensing for 
parameters such as pressure, vibration, temperature, 
and magnetic fields, as well as the associated sensor 
fusion functionalities that integrate these various 
inputs, which can be widely used in bionic robots[131]. 
Neuromorphic emulation has accelerated scientific 
advancements in neuroscience and robotics. We can 
expect these emerging studies to provide additional 
inspiration and momentum for development in the field.
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