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ABSTR AC T
The integration of memristor-based nanodevices into machine learning systems 
has garnered significant attention due to their rapid, low-energy, and non-
volatile switching capabilities. Memristors, with their unique ability to retain an 
internal resistance state based on voltage and current history, excel in executing 
core operations like vector matrix multiplication, addressing the von Neumann 
bottleneck. This review explores the synergy between memristors and machine 
learning, highlighting their potential to enhance neuromorphic computing 
through energy-efficient and highly parallel architectures. The paper examines 
current research, practical implementations, and emerging challenges, providing 
a comprehensive analysis of the future directions in this interdisciplinary field.
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In the pursuit of advancing computing technologies, 
the spotlight has turned towards memristor-based 
nanodevices, heralded for their scalability down to 
sub-10 nm dimensions and their prowess in delivering 
rapid, low-energy, and non-volatile electrical switching 
capabilities. Memristors, quintessentially described 
as ‘memory resistors’, have the unique ability to 
preserve an internal resistance state reflective of 
the voltage and current history applied to them. This 
characteristic sets them apart, as their functionality 
transcends the capabilities of traditional resistors, 
capacitors, and inductors[1]. The essence of memristors 
extends beyond their simple circuit representation, 
offering a glimpse into their microscopically altered 
states via an external two-terminal resistance. 
Initially conceptualized as devices linking charge 
and magnetic flux, memristors have evolved in 
definition to be characterized by a pinched-hysteresis 
loop, with its size being frequency-dependent[2].
The integration of memristors in the realm of machine 
learning presents an exciting frontier. Machine learning, 
the field dedicated to enabling systems to learn from data 
and improve from experience, has seen its algorithms, 
especially artificial neural networks (ANNs), 
become indispensable in processing complex, real-
world environments. These networks, which demand 
substantial computational and memory resources, have 
found applications across a spectrum of areas including 
speech recognition and natural language processing 
[3]. Memristors excel in executing core operations 
like vector matrix multiplication (VMM) within dense 
crossbar arrays, leveraging analog computation laws 
for efficient processing. This approach epitomizes 
the “computing by physics” paradigm, offering a 
significant boost in performance for matrix-intensive 
tasks and addressing the von Neumann bottleneck—a 
major constraint in system performance [4,5].
Neuromorphic computing, gaining momentum as an 
alternative to von Neumann architectures, benefits 
markedly from memristors. Coined by Carver Mead 
in 1990, neuromorphic computing today embodies 
systems inspired by biological neural networks, 
distinguished by their highly parallel and low-power 
nature. Memristors, in this context, shine as the most 
ubiquitous component, drawing parallels to biological 
synapses in their ability to exhibit STDP-like behavior. 
The diversity of materials from which memristors can 
be fabricated further underscores their adaptability 
and potential for energy-efficient circuitry, aligning 
with the fault-tolerant characteristics of neural 
network models to counteract device variation effects.
Despite the burgeoning interest and preliminary 
successes in weaving together the narratives of 
memristors and machine learning, there exists a 
discernible void in comprehensive analyses that 
synergize these interdisciplinary pursuits. This review 
is poised to bridge this gap, embarking on an exhaustive 
exploration of the confluence between memristors and 
machine learning algorithms. It scrutinizes an array 
of algorithms optimized for memristor-based systems, 
evaluates their applicability across various domains, 
and delineates the attendant benefits and challenges 
of these groundbreaking computing paradigms. Our 
discourse is bifurcated into a critique of the prevailing 
research landscape involving memristors within 
machine learning frameworks, and an exploration 
of nascent challenges and promising avenues for 

research, particularly emphasizing the co-design of 
algorithms and memristive hardware to maximize 
the efficacy of artificial intelligence applications.
The rest of the paper is organized as follows: Section 2 
talks about Machine Learning algorithms with theoretical 
underpinnings and practical implementations. Section 3 
broadens the discussion to encompass the multifaceted 
applications of ML integration with memristor. The 
final section offers reflections and perspectives on 
future research directions, charting a course for further 
inquiry into this compelling intersection of disciplines.
                                                                                                                                         

As the digital age advances, the quest for more efficient, 
faster, and smaller computing technologies becomes 
increasingly critical. Within this context, memristors, 
heralded for their unique electrical properties, emerge 
as a pivotal innovation. These devices, characterized by 
their ability to remember previous states of electrical 
resistance, have sparked a revolution in computing 
paradigms, particularly in the realm of machine 
learning. The intrinsic ability of memristors to perform 
computations directly within memory architectures not 
only promises to dramatically enhance computational 
speed and reduce energy consumption but also opens 
up new avenues for the development of sophisticated 
machine learning algorithms. This section delves into 
the transformative role of memristors in machine 
learning, exploring their integration across various 
algorithmic frameworks—from neural networks to 
unsupervised learning and beyond. By facilitating direct, 
in-memory computation, memristors offer a compelling 
solution to the traditional bottlenecks encountered in 
machine learning operations, such as the von Neumann 
bottleneck, thereby heralding a new era of efficiency 
and performance in artificial intelligence applications

2 .1  ANN BASED ML ALGORITHMS
  
Artificial neural networks (ANNs) are designed based 
on how human brains work and   can adjust to different 
tasks because of how they are connected. They have 
been a game-changer for machine learning, offering 
new ways to handle tasks like understanding language, 
recognizing images, and spotting objects[6][7]. But, as 
ANNs get better, they also need more data storage and 
processing power[8], which can be a problem, especially 
for devices with limited computing resources like 
smartphones and IoT devices. To solve this, researchers 
are looking into using memristor arrays to make ANNs 
run faster. This has become a very interesting area 
of study. Memristor-based neural networks mainly 
focus on two things: making decisions (inference) and 
learning (training). We look at some of the key studies 
on how to build these networks, especially for making 
decisions.
The simplest kind of ANN is the Multilayer Perceptron 
(MLP), which is just layers connected together that 
process inputs and can be easily used with memristor 
arrays. MLPs are popular for early experiments with 
memristor networks[9-11]. For example, in 2018, Hu 
and colleagues showed how a single-layer network 
could recognize handwritten digits using a special kind 
of memristor setup[12] consisting of 128 X 64 1T1R 
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array, achieving an accuracy of 89.9% on a standard test 
(fig 2a). This setup converted between analog and digital 
signals, combining the best of both worlds: the efficiency 
of memristors and the flexibility of digital computing. 
More recently, Kim and team [13]demonstrated an MLP 
on a simpler, passive memristor array 64 X 64. They 
found ways to deal with the challenges of programming 
these devices accurately thorough statistic of the target 
conductance with respect to the initial state and the 
programming pulses over the fabricated 4096 devices. 

Another approach uses Convolutional Neural 
Networks (CNNs), which are great for tasks like image 
recognition. In 2020, Yao and team [14]made a CNN 
using memristors 128 X 16 1T1R chips(fig 2b) that was 
much more energy-efficient than traditional computer 
chips. Another study by Lin and colleagues[15] 
proposed a new 3D memristor array design with a 
customized eight layer 3D memristor array for the 
experimental demonstration of hardware-implemented 
CNN that could process data more effectively, showing 
great potential for future applications.
Besides MLPs and CNNs, researchers are exploring 
other types of memristor-based networks for different 

uses, like processing video or translating languages. 
These studies show how versatile memristor networks 
can be, opening up new possibilities for computing 
technology.

2 .1  NON ANN BASED ML ALGORITHMS

 Even though artificial neural networks (ANNs) have 
gotten really good at speeding up certain calculations, 
making big strides in learning and decision-making 
processes, there’s still a big challenge: as data gets 
more complex, it gets harder to handle. This problem, 
known as the “curse of dimensionality,” makes it tough 
to work with data that’s spread out and hard to compare 
because it’s so high-dimensional. Solutions to the 
curse of dimensionality could be dimension ignorable 
computation or efcient dimension reduction methods. 
Using in-memory computing, we can process this 
complex data much faster because it doesn’t slow down, 
no matter how complicated the data gets. However, 
for machine learning tasks that need special ways of 
organizing or estimating data, memristor arrays come 
into play, proving to be really helpful in making these 
tasks faster.   

Figure 1.   Schematics of the hardware-implemented memristive neural network. a MVM scheme with memristor 
arrays and the periphery circuits using the fabricated 128 × 64 1T1R array. Adapted from Ref. [21]. b Sketch of 
the hardware system operation flow with the duplicated convolutional weights and the hybrid training method. 
Adapted from Ref. [41]. The Authors, published by Intelligent Computing, under a Creative Commons Attribution 
License 4.0 (CC BY 4.0). Reprinted with permission. 

Array type Memristor Material Array Size ML Algorithm References

1T1R Ti/HfOx/TiN 128 x 64 BNN [15]

1T1R TiN/TaOx/HfOx/TiN 512 x 1024 BNN [16]

1T1R W/TiN/TiON - ANN [17]

1T1R TiN/TaOx/HfOx/TiN - CNN [18]

1T1R TiN/TaOx/HfAlO/TiN - MLP [19]

1T1R Ta/HfOx/Pt 128 x 64 MLP,LSTM, RL [20-22]

Table 1. Summary of the representative experimentally demonstrated memristor arrays
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When it comes to analyzing and searching data, finding 
similarities is crucial but also really affected by the curse 
of dimensionality. Techniques like measuring Euclidean 
distances(ED) or cosine similarity between data points 
are used in various algorithms, from grouping data to 
finding similar items or organizing maps. The most widely 
studied experiments with memristors for calculating 
these similarities focused on the most common method, 
Euclidean distance, showing that memristors can speed 
up these calculations. Yu et al [23] used dot products 
from a memristor array to estimate Euclidean distance, 
applying it to classify orientations in a network, a simple 
approach but effective for certain tasks. This introduced 
the idea of measuring similarities with memristor arrays 
for the first time. And, Jeong et al[24],  realized a fully 
hardware-based ED calculation method to achieve the 
K-means data clustering algorithm, which is widely 
utilized in various applications(fig 2a-b).
Another strategy to manage complex data is to pick out 
the important features and simplify the data. Principal 
Component Analysis (PCA) is a common method that 
reorganizes the original data into new, unrelated groups, 
focusing on the most important parts. Choi et al. [25]  
showed that memristor arrays can speed up this detailed 
feature selection process in PCA, using an unsupervised 
learning approach, highlighting how memristors can not 
only handle straightforward calculations quickly but also 
more complicated data organization tasks (fig 2c-d).

  Combining memristor technology with machine learning 

has completely changed how we think about computing 
and has opened up new possibilities for exciting uses in 
different areas. Thanks to special features of memristors, 
like their brain-like abilities and the way they can 
process data right where it’s stored, we’re looking at 
a future with faster processing, better energy use, and 
improved data storage. We’re on the edge of a big change 
in technology, with memristor-based machine learning 
showing up in everything from small devices that put AI 
in our hands to advanced systems that make us rethink 
how computers work. This part talks about the main areas 
where memristors and machine learning come together, 
showing how they’re changing fields like manufacturing, 
health care. By looking into these uses, we see how 
memristors can improve current machine learning 
methods and even lead to new kinds of algorithms and 
models we haven’t thought of yet.

3.1  EDGE COMPUTING

Artificial intelligence (AI) is being used more and 
more in embedded applications like monitoring patients 
and ensuring safety in buildings and industries. These 
applications prefer to process data locally (at the “edge” 
of the network) for better security and to use less energy 
for sending data back and forth. However, putting AI into 
environments with very limited energy sources is tough 
because AI usually needs a lot of power, which often 
means AI tasks have to be done in the cloud or closer 
to the user (“the fog”) instead of on the device itself. A 
promising way to solve this is by using systems based 
on memristors, which can greatly cut down the amount 
of energy AI needs to run. This could lead to edge AI 
systems that don’t need batteries because they can get 
energy from their surroundings. Memristors are special 

3.APPLICATIONS OF MACHINE 

LEARNING WITH MEMRISTORS 

Figure 2.  Machine learning algorithms on memristor arrays. a. K-means data clustering by calculating −2U ⋅ 
Wn + Sn for data comparison. Adapted from Ref. [23]. b Mapping method and operation steps of the Euclidean 
distance engine for competitive learning. Adapted from Ref. [24]. c Implementation of PCA to the memristor 
arrays and the experimental verifcation with the Breast Cancer data set. Adapted from Ref. [25]. d Demonstration 
of the sparse coding. Adapted from Ref. [25].
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because they can keep data even when there’s no power, 
which is a big plus.
There’s a growing trend to move AI tasks from big, power-
hungry data centers to smaller devices like smartphones 
and smartwatches, even though these devices have 
limited battery life and processing power. Memristors, 
which let us do computations right where data is stored, 
could make these devices much more energy-efficient. 
With more and more smart devices needing to process 
lots of data efficiently, edge computing becomes key. 
Edge computing means moving data processing from 
powerful cloud servers to the devices at the very edge 
of the internet, like sensors that gather data from the real 
world. Since a lot of this real-world data is unorganized 
(like images or sounds), it’s crucial to use neural network 
techniques, like deep learning, right on these devices to 
make sense of it all. Relying only on cloud servers for 
this could lead to unsustainable levels of power use. 
So, it’s expected that in 2 to 5 years, edge computing 
will become very common as deep learning, the Internet 
of Things, and smart sensors improve and help edge 
computing grow.

Memristor-based neural networks fit well into tiny edge-
computing systems and are inspired by how the human 
brain works. These networks could one day replace the 
traditional computing system we use now. Memristors 
offer many benefits for creating new kinds of computing 
systems that don’t follow the old rules: they can be made 
very small, use very little energy, keep data without 
power, and can be stacked in 3D, making them very 
efficient for future technologies.
In a recent study by Wang etal [26], a novel noise 
distribution normalization (NDN) method is proposed 

to enhance privacy in edge AI applications, particularly 
for IoT systems. This method uniquely employs the 
inherent cycle-to-cycle variations of memristors as a 
natural source of Gaussian distributed noise, bypassing 
the need for additional software or hardware overhead. 
By integrating this noise directly during the weight-
update process, the study showcases a memristor-based 
solution that achieves differential privacy without extra 
circuitry. A case study implementing this method in 
differentially private stochastic gradient descent (DP-
SGD) demonstrates a 3.5% to 15.5% improvement 
in recognition accuracy over traditional approaches. 
This advancement not only capitalizes on memristors’ 
variability for privacy protection but also proposes a 
practical and efficient hardware implementation for 
enhancing data privacy in edge AI systems.
Jean-Michel Portal’s[27] work introduces a binarized 
neural network powered by solar energy, featuring 
32,768 memristors optimized for edge applications. This 
innovative circuit, designed for digital near-memory 
computing, operates effectively in varied illumination, 
shifting seamlessly to approximate computing under low 
light without needing external calibration. Demonstrated 
through image classification tasks, the network maintains 
functionality and accuracy even in low-power scenarios, 
showcasing its potential for self-powered AI in fields 
like health and environmental monitoring. The approach 
marks a significant step towards sustainable, efficient 
edge computing.

3.1  NEUROMORPHIC COMPUTING

In recent years, the development of Compute-in-
Memory (CIM) technology has advanced alongside 

Figure 3. a. Hardware implementation of neural networks using memristor crossbar Adapted from Ref. [26]. b 
Workflow of the NDN method, where n represents the number of pulses that are used to update a weight and 
m represents the number of positive and negative PNs.Adapted from Ref. [26]. c. Overview of the fabricated 
memristor-based binarized neural network.d. Measurements of the binarized neural network powered by a 
miniature solar cell. Adapted from Ref. [27]
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Figure 4. a.  Energy comparison of different modulation schemes in neural network built by single memristor-based 
synapses for sequence learning.Adapted with permission[28]. Copyright 2020, Elsevier. b. The simulation of the binary 
number image. Adapted from Ref. [29]

new nonvolatile devices such as resistive random access 
memories (RRAMs), phase change random access 
memories (PCRAMs), and ferroelectric random access 
memories (FeRAMs). CIM integrates memory and 
processing functions within the same module, effectively 
overcoming the challenges that traditional AI chips 
face, leading to enhanced efficiency and addressing the 
limitations of conventional architectures. This innovative 
approach, combined with algorithmic advancements 
inspired by the biological brain, has enabled neural 
networks to extract abstract features from vast amounts 
of data through deep hierarchical nonlinear processing. 
Neural networks are particularly effective for AI tasks 
requiring substantial computational power, such as self-
driving vehicles and robotics, as they help reduce energy 
consumption. Neuromorphic chips, which integrate 
both hardware and algorithm design, offer a remarkable 
combination of low energy requirements and exceptional 
parallel processing capabilities, making them ideal for 
neural computing and intelligent learning. These chips 
emulate human brain functionalities, executing multiple 
operations simultaneously and processing complex 
tasks efficiently. As AI progresses and Moore’s Law 
faces constraints, there is a growing need for alternative 
technologies that can provide enhanced capabilities 
beyond traditional CMOS technology. 
Memristors are becoming key players in brain-inspired 
computing for a couple of big reasons. First, they work 
a lot like the connections between neurons in our brains, 
showing behaviors similar to synaptic plasticity, which 
is how neurons strengthen or weaken their connections 
based on activity. Some even think this brain-like behavior 
can help explain how learning happens in nature[28-29]. 
Second, memristors can be used to make energy-saving 
circuits, and many studies have looked into how they can 
reduce power use in brain-like systems[28]. Memristors 
are often used to mimic the connections between neurons, 
supporting learning processes similar to those in our 
brains, including both general learning and more specific 

kinds like spike-timing-dependent plasticity[29].

4.  CONCLUSION AND OUTLOOK

This paper provides a comprehensive review of historical 
developments in neuromorphic computing. Over time, 
the motivations behind the creation of neuromorphic 
computers have evolved. The main reasons for building 
these computers are to have low power consumption, 
handle many tasks at once, work in real time, and 
potentially learn and adapt. The paper explores various 
machine learning models utilized within memristors, 
acknowledging that a single perfect model might not exist 
due to each model’s unique advantages and disadvantages. 
Therefore, the future of neuromorphic computing might 
encompass various models, from simple to complex 
ones mimicking biological brains. Training algorithms 
for these computers are also discussed, highlighting 
the need for new approaches designed specifically for 
neuromorphic systems rather than adapting existing 
ones. This area holds great promise for innovation. The 
aim of our paper was to offer readers an overview of 
research within neuromorphic computing particularly 
with memristors, hoping to inspire further innovative 
contributions to the field and encourage the adoption 
of neuromorphic computers in various applications. 
7]. Recently, advancements in materials science and 
nanotechnology have facilitated the development of 
novel sensing technologies, such as Multi-Walled 
Carbon Nanotubes (MWNTs) and gold nanoparticles. 
These sensing front-ends exhibit improved sensitivity 
characteristics, making them suitable for integration 
with spike-based processing[25, 27]. The increasing 
application of carbon nanotubes in electronic sensing 
is primarily due to their superior electrical conductivity 
compared to carbon black. Research indicates that 
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handle many tasks at once, work in real time, and 
potentially learn and adapt. The paper explores various 
machine learning models utilized within memristors, 
acknowledging that a single perfect model might not exist 
due to each model’s unique advantages and disadvantages. 
Therefore, the future of neuromorphic computing might 
encompass various models, from simple to complex 
ones mimicking biological brains. Training algorithms 
for these computers are also discussed, highlighting 
the need for new approaches designed specifically for 
neuromorphic systems rather than adapting existing 
ones. This area holds great promise for innovation. The 
aim of our paper was to offer readers an overview of 
research within neuromorphic computing particularly 
with memristors, hoping to inspire further innovative 
contributions to the field and encourage the adoption 
of neuromorphic computers in various applications. 
7]. Recently, advancements in materials science and 
nanotechnology have facilitated the development of 
novel sensing technologies, such as Multi-Walled 
Carbon Nanotubes (MWNTs) and gold nanoparticles. 
These sensing front-ends exhibit improved sensitivity 
characteristics, making them suitable for integration 
with spike-based processing[25, 27]. The increasing 
application of carbon nanotubes in electronic sensing 
is primarily due to their superior electrical conductivity 
compared to carbon black. Research indicates that 
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